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Beyond Descriptive Statistics: Analysis of Time Series of Student Interactions

in Engineering Courses Through the Lens of Modern Mathematical Methods

Abstract
This study examines the effectiveness of Universal Design for Learning (UDL) tools in
engineering courses by analyzing student interaction time series data through statistical and
machine learning methods. The primary objectives are to determine (1) whether student
engagement with UDL tools is self-informative and (2) to assess whether these interactions can be
used to detect engagement changes. Two key UDL components are studied: (a) digital forms,
which facilitate non-graded participation and formative feedback, and (b) multimedia tools that
provide accessible, self-paced learning opportunities. Student interactions are analyzed using
auto-regressive models, including ARIMA, SARIMA, and advanced machine learning methods
like GRU and CatBoost. The study also employs Pruned Exact Linear Time (PELT) to detect
significant engagement shifts. Findings suggest that student interaction data predicts future
engagement, with GRU performing best in minimizing absolute errors and ARIMA excelling in
proportional error estimation. Segmentation using PELT enhances predictive accuracy by
identifying behavioral shifts. This study shows that classroom-based interactions provide more
stable metrics than outside-classroom activities. Ultimately, these methods can help educators
improve course accessibility, personalize interventions, and optimize UDL strategies at scale.

Introduction
This study examines the implementation and outcomes of Universal Design for Learning (UDL)
activities conducted during the Fall 2023, Spring 2024, and Fall 2024 semesters in three advanced
engineering courses at the University of Illinois. This research team has previously developed
some of the UDL principles and tools and introduced practices and strategies for content delivery.
The approach combined direct student interpersonal collaboration, behavior, and perspective,
leveraging in-class UDL interaction measures and outside-class UDL use. The primary goal of
this article is to provide a case study for the ASEE community and engineering educators by
analyzing two key UDL strategies: 1) encouraging student participation with in-class UDL tools
and 2) fostering knowledge internalization via out-of-classroom UDL tools. To evaluate the
effectiveness of these strategies, we developed our student interaction metrics based on traffic and
interaction data we collected from these tools. Our findings indicate that the distribution of
concise, UDL-based evaluation of course activities positively impacts students’ performance,
with engagement levels varying by course section and semester timing. This was evidenced by
the growth/decrease in interaction activity and the expected performance. The study also applies
statistical and machine learning models to analyze interaction patterns and predict future
interactions. We also model changes in student interactions and report the best-performing
models for this task. Outside-class and inside-classroom interactions were analyzed and validated



to assess differences in behaviors. This study highlights the potential of UDL strategies to
improve student interaction in advanced engineering courses, providing insights for educators
seeking data-driven instructional analysis.

Background

Universal Design for Learning (UDL) is a comprehensive educational framework that promotes
inclusivity by adopting strategies to support diverse student learning, expression, and engagement
methods, ultimately enhancing academic outcomes. Three fundamental principles guide this
approach: 1) presenting content through various methods to accommodate different learning
preferences, 2) enabling students to demonstrate their understanding through multiple forms of
expression, and 3) fostering engagement and motivation through diverse means. These practices
ensure equitable access to learning opportunities for all students, including those with disabilities
(SWD) [1]. UDL strategies include onboarding forms, frequent low-stakes assessments, and
flexible assignment deadlines. While much of the existing UDL work focuses on evaluating its
effectiveness and developing innovative tools, this paper addresses the challenge of applying
these tools in advanced engineering courses and tracking changes from a student perspective.

Measuring Educational Effectiveness of Accessibility in Advanced Engineering Content: The
accessibility of upper-level university engineering courses is a pressing concern, with Universal
Design for Learning (UDL) emerging as a pivotal framework for fostering inclusivity. UDL
principles, which advocate for multiple means of representation, action, and engagement, aim to
minimize barriers for diverse learners, including students with disabilities (SWDs). Key
challenges include resistance to adopting inclusive practices and technological constraints within
Learning Management Systems (LMS). These issues disproportionately affect SWDs and
students from underrepresented groups, often hindering their full participation [2–4]

Effective implementation of UDL-guided course designs promotes equitable learning outcomes.
For instance, hybrid and asynchronous courses employing multimodal teaching strategies—such
as visual, auditory, and interactive content—demonstrate improved accessibility and deeper
student engagement [2, 5, 6]. However, significant gaps remain in the consistent application of
UDL principles. Studies highlight that faculty often lack awareness or resources to adapt their
teaching practices, leading to fragmented efforts in addressing accessibility challenges [2, 4].

Engineering education uniquely benefits from integrating UDL and inclusive design principles.
Inclusive design projects, like creating assistive tools for individuals with disabilities, foster
empathy, innovation, and real-world problem-solving skills among students [2, 7]. Such projects
resonate particularly with underrepresented groups, including SWDs, who are motivated by the
societal impact of their work. Capstone courses, for example, effectively incorporate UDL to
encourage students to consider diverse user needs in their designs [2].

Despite these advancements, SWDs report significant barriers, including difficulties navigating
multiple LMS platforms, inconsistent use of accessible tools, and limited instructor awareness.
Surveys reveal that centralized platforms, captioned videos, flexible deadlines, and unified course
calendars significantly enhance accessibility and engagement [3, 7]. However, many SWDs
refrain from disclosing their disabilities due to many reasons, including stigma or distrust in
receiving timely accommodations [6, 7]. Thus, accessibility should be prioritized in course tools,



without making assumptions about students’ disability status. In this paper, we focus on the use of
two types of tools: 1) mobile-device-friendly student tools that can facilitate student interactions
due to the ease of access and the fact that smartphone UX tends to be significantly better than a
computer, and 2) multimedia recordings and transcripts that student can use at their own pace.

UDL Guidance for Faculty. Faculty expertise on UDL and accessibility is crucial to overcoming
resistance and fostering learning. Programs that train instructors to leverage adaptive technologies
and implement UDL principles effectively enhance course accessibility and student satisfaction
[3, 4]. Using features like adaptive assessments, multimodal content, and real-time feedback
significantly improves the learning experience for diverse students [3, 5]. The potential of UDL
extends beyond accessibility for SWDs, benefiting all students by creating flexible, engaging
learning environments because UDL-based pedagogies seem to improve retention rates, reduce
dropout rates, and attract a more diverse student body [2, 5]. Thus, systemic and comprehensive
faculty training is needed for effective teaching [2, 5, 7]. Integrating UDL principles into
upper-level engineering courses could not only remove barriers for SWDs but also enrich the
educational experience for all learners. Engineering programs can better prepare students by
aligning educational practices with student needs [2]. In this paper, we report lessons learned
from applying UDL techniques inside and outside the classroom as part of the usual strategies for
two courses at the University of Illinois.

Methods

This section describes two key elements of our work. First, we describe the UDL tools used to
engage student participation inside and outside class. This corresponds to anonymized
time-varying data. Second, we describe the process we follow to extract variables that can serve
to identify the level of engagement the students have with the course materials in the upper-level
course under study. The former includes details of the three-fold view of UDL: the modalities to
accommodate learning preferences, multiple forms of expression, and varying types of
engagement of students. The latter includes a description of the model’s rationale, structure, and
results. We also provide detailed implementation information for our methods, including
assumptions and scalability considerations.

UDL Tools Applied

We applied various UDL strategies in the courses under study, including daily lesson goals,
flexible workspaces (including varying sizes of student interactions) both in person and through
forums, and multimedia material (including videos and digital whiteboards). In this report, we
will focus on the tools and activities listed below, which were later used to understand the
students’ responses and perspectives. The objective of using the UDL strategies below is to track
student activity without assigning grades. Non-graded UDL activities and assignments could
foster an inclusive, low-pressure learning environment emphasizing growth over performance
from various perspectives. First, it could encourage a growth mindset, reduce stress, and promote
intrinsic motivation by allowing students to focus on mastering skills without fear of failure.
Second, this approach supports self-regulation and reflection, enabling students to take ownership
of their learning. By focusing on formative assessment and providing meaningful feedback,
teachers can address diverse learning needs and create opportunities for individualized support.
Third, it encourages collaboration, peer learning, and creativity while reducing anxiety tied to



grades. Tracking activities helps teachers adapt instruction and identify learning gaps, aligning
with mastery-based learning principles. Finally, students are empowered to take risks, engage
deeply, and develop a love for learning. This approach builds a supportive classroom culture
where all students can succeed. We focus on two components.

Component A. Digital Forms. Online tools like Google Forms and Polls Everywhere align with
UDL principles by offering flexible, inclusive, and interactive learning opportunities. These tools
provide multiple means of representation by presenting information in diverse formats such as
text, visuals, or videos, making content accessible to all learners. They enhance engagement by
encouraging active participation through polls, quizzes, and surveys, with options for anonymity
to reduce anxiety. Students can express their understanding in various ways, accommodating
diverse communication styles and preferences. More precisely, we use digital forms for student
activities that are not graded for completion but for participation. We follow a structured format
for the interaction for most of the forms, but allow a few to be answered via pencil and paper,
which is later uploaded as an image. All of the forms allow for open-ended questions that
students can answer with no constraint on the number of characters, but then are summarized or
addressed during class. The structure of the form is concrete and is as follows:

Element Type
Lecture Semester and Number Label
Form’s Topic Label
Question(s) Field (text/image/multiple choice - several combined)

Table 1: Elements of the Course Interaction Tools

Component B. Multimedia Material (ClassTranscribe). Online multimedia tools like
ClassTranscribe provide inclusive, accessible, and flexible learning opportunities. By
automatically generating transcripts from lecture videos, ClassTranscribe ensures multiple means
of representation, making content accessible to students with hearing impairments, language
barriers, or different learning preferences. Transcripts also allow students to interact with the
material in a textual format, enabling them to search, highlight, and review key concepts at their
own pace. This gives students control over how and when they access content, such as revisiting
lectures for better understanding or studying asynchronously. It also supports multiple means of
action and expression by allowing students to integrate video and text-based content into their
learning, giving students the format that best suits their needs. In the courses under study,
students are allowed not only to use and engage with the recordings of the onsite lectures via
ClassTranscribe but also have the opportunity to contribute to other students by submitting
corrections to errors in the transcription.

Research Questions. To evaluate the methods above, we focus on two elements: namely, how
self-informative the interaction of students with UDL tools is, and second, how to use these
interactions to automatically identify changes in student usage of UDL tools that can be used later
to determine appropriate measures to help students. Thus, in the remainder of this paper, the
accessibility of engineering courses is analyzed via two research questions:

RQ1: Is student interaction with UDL tools self-informative?

RQ2: Can student interaction be used to assess changes in engagement?



Notice that “self-informative” in this context means that student interactions with UDL tools
could predict future performance, engagement, or learning outcomes without needing additional
external factors. Thus, to answer RQ1, we select models that show how past interaction data
predict future engagement levels and how interactions’ frequency, type, or quality correlate with
self-reported understanding or learning outcomes. To answer the second question (RQ2), we aim
to identify changes using statistical and machine learning auto-regressive methods by studying
how changes in engagement are reflected in time-series interaction data.

Model Specification and Evaluation

To answer both research questions, we will consider auto-regressive models. Auto-regressive
models are highly appropriate for analyzing Universal Design for Learning (UDL) data because
they account for temporal dependencies, repeated measures, and hierarchical structures inherent
in student engagement data. Engagement patterns, such as tool usage or quiz completion, are
influenced by prior behaviors, making AR models ideal for capturing these dynamics. These
models can track how past interactions with UDL tools (e.g., time spent on videos) predict future
engagement, allowing educators to identify trends, cycles, or abrupt changes. Unlike simpler
models, AR methods handle lagged effects, showing how long past behaviors impact future
outcomes, which is crucial for understanding sustained engagement. AR models can also be
extended to multi-variable contexts (e.g., Vector Auto-Regression) to explore how different UDL
activities, like video watching and quiz attempts, interact over time. They support forecasting,
enabling educators to predict engagement changes and intervene proactively. By identifying
systematic patterns, AR models distinguish between meaningful trends and random noise,
providing actionable insights. Extensions like ARIMA or machine learning-based LSTMs
enhance the ability to handle non-linear, seasonal, or multi-scale engagement behaviors. This
makes auto-regressive modeling a powerful tool for automating the assessment of student
engagement and improving UDL strategies over time. The steps for our analysis are:

Step-0. Data preprocessing - Data preprocessing was performed in two steps. First, the variable
used for measuring engagement was the response length for the student interactions. This is based
on the analysis of the responses where shorter texts indicated less interest in the topic (e.g., “I
don’t know” answers). This does not preclude the potential use of other summary statistics to
describe the data, including semantic analysis. Second, the data imputation was implemented
using the within-subject median for missing values (e.g., NaN). We allow zero-length responses
precisely because we are interested in measuring student-initiated contributions. These steps were
performed on anonymized data, so no access to additional variables was possible. After these
steps, we formatted the data as a time series for further processing without normalization.

Step-1. AR Model Selection (To address RQ1) - As detailed before, we applied statistical and
machine learning autoregressive models for the benefits listed below, which can make them
suitable for educational data. Specifically, we studied:

1. Auto-Regressive Integrated Moving Average (ARIMA). ARIMA is excellent for modeling
univariate time-series data with temporal dependencies, especially when the data is
stationary or can be transformed into stationarity.

2. Seasonal Auto-Regressive Integrated Moving Average (SARIMA). SARIMA extends
ARIMA by incorporating seasonality, making it ideal for time-series data with repeating



patterns (e.g., weekly or monthly cycles). It can capture both short-term trends and
long-term periodicity.

3. Exponential Smoothing with Holt-Winters. Holt-Winters is suitable for data with seasonality
and trends. It uses exponential smoothing to weigh recent observations more heavily.

4. Extreme Gradient Boosting (XGBoost). XGBoost is a robust machine-learning algorithm
that can handle non-linear relationships in time-series data by leveraging gradient boosting
on decision trees. It is highly efficient for large datasets and supports missing data.

5. CatBoost. CatBoost is ideal for time-series data with categorical features, as it efficiently
handles categorical variables without preprocessing.

6. Long Short-Term Memory (LSTM) LSTMs excel in modeling long-term dependencies in
sequential data, capturing complex patterns that traditional models might miss. Their
memory cell architecture is particularly effective for handling time-series data with
non-linear relations.

7. Gated Recurrent Unit (GRU). GRUs are a more straightforward and computationally
efficient alternative to LSTMs. They offer comparable performance in modeling sequential
data with short- and medium-term dependencies and for faster training and inference.

Step-2. Identification of Changes in Engagement (To answer RQ2) We used Pruned Exact Linear
Time (PELT) to study variations in the student activities. PELT is a fast and accurate change-point
detection algorithm that identifies significant shifts in time series data, such as trends, variance, or
mean changes. It is computationally efficient and scalable, making it well-suited for detecting
engagement changes in real time for scenarios where educators intend to apply interventions in
their courses on the fly.

Step-3. Example of benefits: Re-evaluation of AR Models on the Identified Change Points.
(Application of Step-2 to improve Step-1). We provide an example of how to use Step-2 to design
further analysis of course designs. Note that this is not the only application, and other decisions
can be made based on the Step-1 analysis, such as course interventions. Change-point detection is
valuable for partitioning time-series data in UDL contexts by identifying when significant shifts
in student engagement occur, such as sudden drops in tool usage or spikes in activity. This
segmentation improves the accuracy of auto-regressive models by allowing them to focus on
stable engagement patterns, reducing noise in predictions. It also enables educators to design
timely, targeted interventions based on the timing and nature of detected changes, improving the
effectiveness of UDL tools. By analyzing separate periods, change-point detection enhances
feature engineering, capturing localized trends and seasonal components more effectively.
Additionally, it helps uncover underlying causes of engagement shifts, such as curriculum updates
or external events, allowing UDL strategies to adapt to students’ needs. These insights also
support efficient resource allocation by ensuring interventions focus on periods of greatest impact,
ultimately optimizing student engagement and learning outcomes.

Model Formula – Observation: The solution of Step-1 can be used to identify a function
xt = f(xt−1, . . . , xt−n) that links the multivariate variables of student interactions, xt , based on
historical information xt−1, . . . , xt−n This relation is not necessarily linear, and its complexity can
be addressed via auto-regressive models that can capture these nonlinear relations.



Assumptions and Diagnostics:

Our analysis assumes that the length or duration of student interactions with course elements (or
UDL components) can provide information that may be correlated with students’ interests in the
course content. We also assume that this interaction is highly variable (due to changes in the
course pace and the student’s interests) and nonlinear. For this reason, we apply both parametric
and non-parametric models to run our predictions.

Scalability:

The final selected model, in our case, would be the only scaling constraint for the
recommendation in this paper. ARIMA and SARIMA are computationally efficient and scalable
for small to moderately sized time-series datasets. Still, they can struggle with extensive or
high-dimensional data due to their reliance on manual parameter tuning. Holt-Winters is
lightweight and highly scalable for simple time-series data, notably when handling trends and
seasonality, but its performance diminishes for complex or non-linear patterns. XGBoost and
CatBoost are highly scalable for large datasets, leveraging parallel processing and efficient
memory usage, making them ideal for high-dimensional and categorical data. LSTM and GRU,
while powerful for capturing complex and non-linear temporal dependencies, are computationally
intensive and require significant resources for training on large datasets. However, GRU is
slightly faster due to its simpler architecture. PELT, as a change-point detection algorithm, is
highly scalable and efficient, operating in linear time, making it suitable for large time-series
datasets where detecting shifts in trends or patterns is critical. These models offer varying levels
of scalability, with simpler statistical models excelling in smaller datasets.

Results

Part I - Data Description

The datasets we study in this paper include students’ interactions for two upper-class engineering
courses with a strong programming and mathematical focus. The statistics of these courses are
listed in Table 2.

Course Group Number of Subjects
Course I A 96
Course I B 47
Course II A 94
Course II B 50
Total 287

Table 2: Number of subjects per group and course

The main difference between courses I and II behaviors is the interactions of time stamps 25-27
for Course I, where the level of activity was greater. While Course II was larger, the number of
subjects listed in the table for each course is approximately the same for our analysis because
Course II also had students who enrolled in the online version of the course.



Part II - Prediction Models

Autoregressive Analysis.

We applied statistical and machine learning tools to assess the self-informative patterns of student
activities. The models in these results are listed in the previous section, and the acronyms are
listed in the appendix.
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CatBoost achieves the best SMAPE (127.91). In Figure 2, GRU has the lowest RMSE (56.20) 
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Figure 2: Course II – Model Performances Summary (averaged across all subjects)

Figures 1 and 2 summarize the performance of the models for both Course I and Course II. The
figures compare the performance of the various models we introduced in the Methods Section



based on three evaluation metrics: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Symmetric Mean Absolute Percentage Error (SMAPE). These metrics measure the
accuracy of each model, where lower values indicate better performance. Figure 1 shows slightly
higher errors for the first course than the second, suggesting the second course might have less
variability or nonlinearities. Errors (RMSE, MAE, SMAPE) are generally lower in Figure 2,
indicating that the second dataset is likely less complex or shows less variability, where models
show better performance overall, with smaller error differences.

Best Performing Model (Overall Lowest Errors): As shown in Figure 1, GRU and CatBoost are
the best-performing models – GRU achieves the lowest RMSE (103.03) and MAE (83.94), while
CatBoost achieves the best SMAPE (127.91). In Figure 2, GRU has the lowest RMSE (56.20) and
MAE (50.66), indicating consistent performance across datasets. CatBoost performs slightly
worse than GRU but still shows good SMAPE.

As seen in these figures, GRU is the most robust model across both datasets, achieving the lowest
RMSE and MAE consistently, making it the best option for accurate predictions; CatBoost is the
best model for handling proportional errors (SMAPE), especially in the second dataset. Statistical
models like ARIMA perform well compared to other statistical methods (SARIMA and
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Figure 3. Course I Partitioning - Sample of 5 interactions Figure 3: Course I Partitioning – Sample of 5 interactions



Figure 4. Course II Partitioning - Sample of 5 interactions 
changes in student engagement. Figures 3 and 4 show the results of this analysis for Course I 
and II, respectively, for a selection of 5 subjects. The remaining subjects have the same estimated 
partition of their time series, as this is a between-subject segmentation of the time series. The 
figures show the times before the first evaluation of the semester; the time series are color-coded 
before (blue) and after the assessment (red). As shown there, there are three main points 
identified by the PELT method with l1 loss.  
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In this section, we compare the performance of two models (ARIMA and GRU) on the time 
series data by partitioning the training and test sets on the segments identified by the PELT 
method. Thus, we used datasets of varying sizes and proportions, evaluated using three metrics: 
RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), and SMAPE (Symmetric 
Mean Absolute Percentage Error). For illustrative purposes, Figure 5 shows the results for the 

Figure 4: Course II Partitioning – Sample of 5 interactions

Holt-Winters) but fall behind machine learning (GRU and CatBoost) in both datasets. Machine
learning models (CatBoost, XGBoost) perform well on more straightforward longitudinal datasets
but are outperformed by deep learning models (GRU, LSTM) for complex temporal patterns, as
our analysis corroborates. SARIMA is the lowest-performing model across both datasets.

Part III - Behavior Shifts

Understanding Variation of Engagement.

We run a segmentation analysis for the time series of engagement data to understand sudden
changes in student engagement. Figures 3 and 4 show the results of this analysis for Course I and
II, respectively, for a selection of 5 subjects. The remaining subjects have the same estimated
partition of their time series, as this is a between-subject segmentation of the time series. The
figures show the times before the first evaluation of the semester; the time series are color-coded
before (blue) and after the assessment (red). As shown there, there are three main points identified
by the PELT method with l1 loss.

Predicting student engagement with the segmented series:

In this section, we compare the performance of two models (ARIMA and GRU) on the time series
data by partitioning the training and test sets on the segments identified by the PELT method.



RMSE error, while Table 3 (Appendix) shows the details for the other error metrics. In Figure 5, 
each bar corresponds to a different dataset size (50%, 66%, and 83%), where the percentages 
represent how much of the total data each dataset constitutes. 

 

FIGURE 5. Course I - After Change Point Identification – Model Evaluation Summary 
(averaged across subjects). Errors decrease with increasing data sizes.  
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Figure 5: Course I – After Change Point Identification – Model Evaluation Summary (averaged
across subjects). Errors decrease with increasing data sizes.

Thus, we used datasets of varying sizes and proportions, evaluated using three metrics: RMSE
(Root Mean Squared Error), MAE (Mean Absolute Error), and SMAPE (Symmetric Mean
Absolute Percentage Error). For illustrative purposes, Figure 5 shows the results for the RMSE
error, while Table 3 (Appendix) shows the details for the other error metrics. In Figure 5, each bar
corresponds to a different dataset size (50%, 66%, and 83%), where the percentages represent
how much of the total data each dataset constitutes.

As shown in Figure 5 (and Table 5 in the Appendix), GRU is the best model for minimizing
absolute errors (RMSE, MAE), particularly on small or relatively larger datasets, and shows
significant improvement as data size grows. On the other hand, ARIMA consistently handles
proportional errors (SMAPE) better and performs well on medium-sized datasets for RMSE and
MAE. Thus, our general recommendation for instructors is to use GRU when reducing absolute
prediction errors is a priority, especially with relatively larger datasets, and use ARIMA for
applications requiring proportional error minimization or when data size is moderate. We discuss
some specific and detailed technical observations in the Appendix.

Trends Across Datasets Per Error and Data Size: GRU generally outperforms ARIMA in
minimizing absolute errors (RMSE and MAE), especially in non-trivial or larger datasets.
ARIMA performs better in moderate dataset volumes. For proportional errors, ARIMA performs
better. More technical details on these analyses are presented in the appendix.

Sudden Changes in Student Interaction: We analyzed the time-series segmentation presented in
this section to identify sudden changes in student interactions. In the Appendix, we present the
details of this analysis, showing the segmentation points where the prediction error is minimized.
Table 4 shows the results of identifying sudden changes in student interactions, with lower error
values observed at segmentation points 5, 10, and 14 for data sizes 10, 15, and 22.



Outside of the Classroom Interaction: We analyzed student interactions with course materials
outside the classroom by counting daily interactions. Fewer students engaged with the tool, with
only 44 participating and 20 doing so for three or fewer days. GRU slightly outperforms LSTM
across all evaluation metrics when averaged across subjects. Performance worsens as the training
ratio increases, suggesting that both models struggle with larger datasets. However, GRU
performs better in SMAPE, indicating its advantage when considering proportional errors and
normalized data. Further technical details of this analysis are presented in the Appendix.

Conclusion

In this work, we analyzed two specific questions that educators face when designing and
monitoring the accessibility of advanced engineering courses, namely, how self-informative the
information in UDL tools is and whether student interaction/UDL data can be used to assess
changes in engagement. Based on our analysis, the answer to both questions seems affirmative.
First, student interaction with UDL tools is self-informative, as evidenced by the ability of models
like GRU to predict future interaction patterns. Second, student interaction data can be used to
assess changes in engagement, as segmentation methods like PELT effectively identify shifts in
behavior, enabling tailored predictive modeling.

To answer the research questions, our analysis applies statistical and machine learning tools to
assess student activity patterns and predict UDL strategy engagement using error metrics such as
RMSE, MAE, and SMAPE. GRU is the most robust model across datasets, consistently achieving
the lowest RMSE and MAE, making it highly accurate for minimizing absolute errors. CatBoost,
however, performs better for SMAPE, indicating its strength in handling proportional errors,
particularly in simpler datasets. ARIMA and other statistical models like SARIMA perform
reasonably well but lag behind GRU and CatBoost.

Segmentation analysis using the PELT method highlights shifts in student engagement, revealing
partitions that help optimize model performance by training and testing within these segments.
GRU outperforms ARIMA for absolute error minimization on smaller (size 10) and larger
datasets (size 18), while ARIMA performs better on medium-sized datasets (size 15), particularly
for SMAPE. These results suggest GRU excels with more data, while ARIMA is more stable
across varying dataset complexities.

GRU and LSTM exhibit lower variance across all metrics, making them more reliable for
consistent predictions than statistical models like ARIMA and SARIMA. GRU also has the
tightest distribution for RMSE and MAE, confirming its consistency. In conclusion, GRU is
recommended for absolute error minimization, especially with larger datasets, while ARIMA is
better suited for proportional error reduction (SMAPE) or moderate data sizes. CatBoost can
serve as an alternative for proportional errors in some instances.

The results for inside-the-classroom metrics are more consistent than outside-classroom due to
several factors, including the size of the data (fewer elements in the outside-classroom case), the
length of the time series (fewer timestamps and different lengths for outside-classroom), and other
behavioral elements (different motivations or opportunities may lead students to interact inside
and outside the classroom differently). These findings highlight the importance of model
selection and error prioritization in UDL applications.



Discussion

Our experience shows that digital forms and polls support low-stakes feedback, allowing students
to engage without fear of failure and fostering a safe and growth-oriented learning environment.
Features like accessibility options and real-time feedback ensure inclusivity for students with
disabilities or specific needs. Additionally, they promote self-reflection and peer learning by
encouraging students to review their responses and compare them with others. By incorporating
these tools, educators can create dynamic, student-centered learning experiences that cater to
various needs and preferences. Likewise, multimedia tools, such as ClassTranscribe, help with
self-regulation by assisting students to track their progress and manage their learning
independently. It also provides equitable access for students who may not be able to attend live
lectures or need additional time to process information. By incorporating such tools, educators
can create a more inclusive and adaptable learning environment that meets the diverse needs of all
students and aligns with UDL principles. Regarding scalability, the models and strategies
presented in this paper can be applied to large courses (of about hundreds of students). Other
methods must be considered to scale the analysis to larger settings (such as massive open online
courses) where centering predictors, standardizing continuous variables, and normalization could
be used to ensure scalability.

In addition to the various models tested in our study, including ARIMA, SARIMA, and machine
learning models like GRU and CatBoost, we tested the Holt-Winters method, which can provide
valuable insights. Holt-Winters represents time series with explicit seasonal patterns through its
three-component structure (level, trend, and seasonality). However, for the UDL interaction data
in our advanced engineering courses, Holt-Winters may be less appropriate than the selected
models, which likely stems from the complex, non-linear patterns in student engagement that
don’t align perfectly with Holt-Winters’ assumptions of consistent seasonal cycles. In particular,
Holt-Winters struggles to adapt to abrupt behavioral shifts or irregular usage patterns, which are
common in educational settings driven by deadlines or exams. Since it cannot model
non-seasonal variance well, it tends to underfit in contexts where interaction frequency changes
unpredictably. As shown in our results, machine learning models like GRU outperformed
traditional statistical approaches for minimizing absolute errors, suggesting that capturing the
nuanced relationships in educational interaction data requires more flexible models.

Our general recommendation for instructors is to use GRU when reducing absolute prediction
errors is a priority, especially with larger UDL datasets, and use ARIMA for applications
requiring proportional error minimization or when data size is moderate. However, time series
with fewer than ten elements or five timestamps can lead to issues, and traditional statistical
methods may be preferred in those scenarios.
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Appendices

A Technical Details and Additional Analysis

Predicting student engagement with the segmented series:

In this section, we provide additional details of the performance comparison between ARIMA
and GRU models on the time series data, but partition the training and test sets on the segments
identified by the PELT method. Thus, we report results on varying sizes and proportions of the
training sets, evaluated using all three metrics: RMSE (Root Mean Squared Error), MAE (Mean
Absolute Error), and SMAPE (Symmetric Mean Absolute Percentage Error). In Table 3, each
sub-table corresponds to a different dataset size (50%, 66%, 83%), with percentages representing
how much of the total data each dataset constitutes. As shown in Table 3, GRU is the best for
minimizing absolute errors (RMSE, MAE), particularly on small or large datasets, and shows
significant improvement as data size grows. On the other hand, ARIMA consistently handles
proportional errors (SMAPE) better and performs well on medium-sized datasets for RMSE and



RMSE MAE SMAPE
data size and percentage: 10; 50%==5

ARIMA 80.97 74.39 125.70
GRU 61.75 55.32 169.24

data size and percentage: 15; 66%==10
ARIMA 62.54 51.90 99.30
GRU 75.81 71.22 154.90

data size and percentage: 15; 66%==10
ARIMA 54.72 54.72 90.95
GRU 25.27 25.27 142.06

Table 3: Course I - After Change Point Identification - Model Evaluation Summary (averaged
across all subjects)

MAE. Thus, our general recommendation for instructors is to use GRU when reducing absolute
prediction errors is a priority, especially with larger datasets, and use ARIMA for applications
requiring proportional error minimization or when data size is moderate. We note some consistent
behavior across training set sizes:

Case 1: Data Size = 10 (0.5 training)

• RMSE and MAE: GRU (RMSE = 61.75, MAE = 55.32) significantly outperforms ARIMA
(RMSE = 80.97, MAE = 74.39), demonstrating lower overall and average prediction errors.

• SMAPE: ARIMA achieves better SMAPE (125.70) compared to GRU (169.24), indicating
better performance in handling percentage-based errors.

• Observation: On this small dataset, GRU performs better for absolute errors (RMSE, MAE),
but ARIMA handles proportional errors more effectively.

Case 2: Data Size = 15 (0.66 training)

• RMSE and MAE: ARIMA (RMSE = 62.54, MAE = 51.89) now outperforms GRU (RMSE
75.81, MAE = 71.22), showing better overall & average accuracy for medium sized data.

• SMAPE: ARIMA (SMAPE = 99.30) remains better than GRU (SMAPE = 154.90),
maintaining its advantage in proportional error handling.

• Observation: ARIMA begins to outperform GRU across all metrics with a slightly larger
dataset, indicating its robustness on medium-sized data.

Case 3: Data Size = 18 (0.834 training)

• RMSE and MAE: GRU (RMSE = 25.27, MAE = 25.27) substantially outperforms ARIMA
(RMSE = 54.72, MAE = 54.72), with much lower prediction errors.

• SMAPE: ARIMA achieves better SMAPE (90.95) than GRU (142.06), showing continued
strength in proportional error reduction.

• Observation: On this larger dataset, GRU excels in absolute error metrics, while ARIMA
remains more effective for SMAPE.



Trends Across Datasets Per Error:

RMSE vs MAE: GRU performs better than ARIMA on the smallest (10) and largest (18) datasets,
suggesting it benefits from smaller or larger data sizes. ARIMA performs better for the
medium-sized dataset (15), indicating it may excel with moderate data. SMAPE: ARIMA
consistently outperforms GRU in proportional error handling across all dataset sizes. This makes
ARIMA more reliable for applications where percentage-based errors are critical.

Impact of Data Size:

GRU significantly improves absolute error metrics (RMSE and MAE) as data size increases,
suggesting it leverages more data effectively. ARIMA remains relatively stable but performs best
on medium-sized data for absolute errors and handles SMAPE well.

Sudden Changes of Behavior and Error Values:

Table 4 shows an additional analysis of the applicability of time series segmentation to identify
sudden changes in student interactions. The error values are lower for segmentation points 5, 10,
and 14 (data sizes 10, 15, 22).

RMSE MAE SMAPE
datasize=10; 0.5==5 training:

RMSE MAE SMAPE
61.87 51.15 124.18

datasize=15; 0.67==10 training:
RMSE MAE SMAPE
98.01 89.81 136.91

datasize=22; 0.68==14 training:
RMSE MAE SMAPE
96.71 73.37 170.48

Table 4: Course II performance for GRU

Evaluation Outside of the Classroom:

We also analyze the interactions with the materials outside of the classroom. For these, we
counted the number of interactions each student had per day. The number of students interacting
was smaller, with 44 interacting with the tool, and 20 did it in 3 or fewer days. Table 5
summarizes the performance of GRU and LSTM models across all subjects using four metrics:
RMSE, MAE, and SMAPE. GRU slightly outperforms LSTM in all metrics.

Model Evaluation Summary(averaged across all subjects):
model RMSE MAE SMAPE
GRU 363.23 276.40 120.45
LSTM 366.74 284.57 128.94

Table 5: Outside Classroom - Models’ Prediction Performances

Table 6 breaks down model performance (GRU and LSTM) across three training ratios: 0.4, 0.5,
and 0.6, using the same metrics as Table 5. The models generally exhibit worsening performance



RMSE by Training Ratio and Model:
Training % Model RMSE MAE SMAPE

0.4 GRU 330.82 230.45 133.04
LSTM 329.90 223.30 138.10

0.5 GRU 371.39 283.32 105.85
LSTM 385.73 321.84 125.09

0.6 GRU 387.47 315.42 122.45
LSTM 384.59 308.58 123.64

Table 6: Outside Classroom - Models’ Prediction Performances Per Error Rate

(higher RMSE and MAE) as the training ratio increases, indicating the models struggle with
larger training datasets. However, GRU performs better for SMAPE, so once the magnitudes are
considered and normalization is applied, GRU may be a better choice.

In summary, in the case of out-of-the-classroom analysis, GRU performs slightly better than
LSTM across most metrics (RMSE, MAE, SMAPE) and training ratios, making it the preferred
model for this dataset. However, the dataset size for out-of-the-classroom activities is low, and
thus, the results in this section are only illustrative. More analyses are needed, with additional
features or alternative modeling approaches outside of the scope of our discussion. This, however,
does not affect the validity and reliability of the analysis. Furthermore, the inside classroom
analysis includes 287 entries across more than 25 time series, and the observations provided can
be insightful for the ASEE community.

B List of Acronyms

Acronym Description
General and Education:

UDL Universal Design for Learning
SWD Students with Disabilities
LMS Learning Management System

Error Measures:
RMSE Root Mean Squared Error
MAE Mean Absolute Error
SMAPE Symmetric Mean Absolute Percentage Error

Statistical Models:
ARIMA Auto-Regressive Integrated Moving Average
SARIMA Seasonal Auto-Regressive Integrated Moving Average

Machine Learning Models:
XGBoost Extreme Gradient Boosting
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
PELT Pruned Exact Linear Time

Table 7: Acronyms Used in This Article
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